Разное

Заземление в частном доме: расчёт, устройство, монтаж

Ещё каких-то 20–25 лет назад мы строили частные и общественные здания, даже не думая об эффективной защите человека от поражения электрическим током. С недавних пор стало всё по-другому — наши вводно-распределительные щитки становятся крупнее, в них теперь располагаются десятки автоматов защиты, несколько УЗО, и там практически всегда есть отдельная шина для заземления. Что изменилось? Электричество теперь буквально вокруг нас, в домах появилось огромное количество электроустановочных изделий, масса бытовых приборов и силовых агрегатов, которые являются потенциальными источниками опасности, кроме того, наверное, мы стали больше ценить человеческую жизнь.

Современные строительные нормы (в частности ПУЭ) требуют, чтобы для защиты человека в жилых помещениях применялась хотя бы одна из следующих мер:

понижение напряжения;
выравнивание потенциалов;
использование двойной изоляции проводов;
применение разделительных трансформаторов;
установка устройств защитного отключения;
обустройство зануления, заземления.
Конечно, к вопросу безопасности следует подходить комплексно и воспользоваться всеми возможными способами, но заземление в доме должно быть обязательно.

Заземление электроустановок — это самый надёжный и действенный метод защиты, который вкупе с другими мероприятиями делает бытовое электричество абсолютно безопасным. По сути, заземление представляет собой умышленное соединение корпусов электроустановок (элементов, которые не под напряжением) с грунтом. Для многих домовладельцев организация заземления кажется делом либо слишком дорогим и технологичным, либо слишком простым, что тоже не совсем так.

Заземление в частном доме. Расчет, устройство, монтаж

В частном доме сделать надёжное заземление технически совсем не сложно, так как расстояние до земли совсем небольшое, а свободные площади во дворе можно найти всегда. Куда меньше повезло жителям старых многоквартирных домов, где заземляющие контуры уже не работают, и то некоторые соотечественники умудряются индивидуально заземлиться с верхних этажей, прокладывая проводник от своей квартиры по стенам здания до самой земли. Между тем было бы ошибкой полагать, что любой забитый в почву железный штырь, или любая водопроводная труба станет нормальным работающим контуром заземления. Заземление — это система, состоящая из нескольких важных элементов с конкретными нормируемыми параметрами, которая функционирует по определённым принципам, плотно взаимодействует с другими системами.

Основы работы защитного заземления
В неисправном электрическом приборе (например, при повреждении изоляции питающего провода) на его корпусе может появляться напряжение. Когда человек прикасается к устройству, ток устремляется в землю, проходя через его тело и часто нанося непоправимый вред, далеко не все защитные приспособления могут среагировать или успеть достаточно быстро разорвать цепь. Почему ток идёт в землю? Потому что она легко принимает разряд, так как обладает очень большой электроёмкостью. Если току утечки (сквозной ток проводимости, протекающий между двумя или несколькими электродами) предложить другой, более простой путь, например проводник с меньшим сопротивлением — для заземления оно не должно превышать 4 Ом, то он пойдёт к земле по нему, а не через человека с сопротивлением тела 1 кОм. В цепи возникает утечка тока, и устройство защитного отключения (УЗО) за доли секунды отключает повреждённый участок.

Именно поэтому все современные электрические исполнительные устройства и агрегаты разрабатываются таким образом, чтобы к ним можно было подключить заземляющий проводник, а для разводки применяют трёхжильные провода. Это касается также всей современной бытовой техники, где корпус и один из контактов сетевой вилки соединены — для их питания применяют розетки с РЕ-контактом (усиками). Все светильники, люстры, бра имеют клеммы для присоединения «жёлтого» проводка, заземляются и металлические ящики распределительных щитков и металлоконструкции, на которых расположено силовое оборудование. В обязательном порядке заземляются все потребители сетей с напряжением переменного тока свыше 42 В, для постоянного тока — свыше 110 В. Заметим, что заземление обеспечивает не только электробезопасность людей, но также:

стабилизирует работу электроустановок;
защищает приборы от перенапряжений;
снижает количество сетевых помех и интенсивность электромагнитных излучений высокой частоты.
Заземляющее устройство состоит из следующих элементов:

заземлителя
заземляющих проводников
Заземление в частном доме. Расчет, устройство, монтаж

Заземляющим проводником будет любая часть заземляющего устройства, соединяющая электроустановки с заземлителем, это отдельные жилы проводов (общепринято — в жёлтой изоляции), элементы наружных и внутренних контуров, специальная шина, находящаяся в щитке.

Заземлитель — это электрод, часть цепи заземления, непосредственно контактирующая с землёй. Данный элемент обеспечивает стекание токов в грунт и их рассеивание. В зависимости от того, используются для этого заглублённые элементы строительных конструкций или созданный специально проводник, выделяются естественные и искусственные заземлители. Согласно ПУЭ предпочтение всегда необходимо отдавать использованию естественных заземлителей (пункт 1.7.35), в частном доме это может быть:

металлическая обсадная труба скважины;
любые стальные трубопроводы, в том числе трубы для прокладки электрических проводов;
свинцовая броня силового кабеля;
различные металлические стойки и опоры на улице, например, элементы забора;
заглублённые железобетонные и металлические элементы здания (колоны, фермы, шахты, фундаменты).
Искусственные электроды можно использовать, если сопротивление естественных заземлителей не соответствует норме, далее мы рассмотрим их подробнее.

Расчёт заземляющего устройства
Основной параметр, который необходимо рассчитать — это проводимость заземлителя. Иными словами, нам нужно подобрать электрод такой конфигурации, чтобы сопротивление заземляющего устройства не превышало нормативное. Положения ПУЭ указывают следующие цифры, которые являются допустимым максимумом:

2 Ом — для линейного напряжения однофазного тока 380 вольт;
4 Ом — для 220 вольт;
8 Ом — для 127 вольт.
При трёхфазном токе максимальными сопротивлениями будут те же 2, 4 и 8 Ом, но только для напряжений 660, 380 и 127 вольт соответственно.

От чего же зависит проводимость заземлителя (читай, сопротивление заземляющего устройства)? Упрощённо — от площади контакта электрода с землёй и удельного сопротивления грунта. Чем крупнее заземлитель, тем меньше сопротивление, тем больше тока принимает грунт. Все формулы расчёта предлагают учитывать площадь поверхности электрода и глубину его погружения. Например, для расчёта единичного заземлителя круглого сечения имеем такую формулу:
Обратите внимание, удельное сопротивление грунта — это основной параметр расчёта. Чем меньше это сопротивление, тем более проводимым будет наше заземление и более эффективной защита. Основные базовые цифры для определённого типа грунта можно найти в общедоступных таблицах и графиках, но многое зависит от его фактического состояния — плотности, водного баланса, температуры, сезонной глубины промерзания, наличия и концентрации в нём «электроактивных» химических веществ — щелочей, кислот, солей. Более того, на разных глубинах ситуация может существенно меняться, другими становятся физические свойства материкового основания, появляются водоносные слои, которые уменьшают сопротивление, увеличивается температура... Как правило, с увеличением глубины грунт становится более приемистым по току.

При температурах ниже нуля сопротивление грунтов резко повышается из-за замерзания воды. Поэтому возникают определённые сложности с заземлением в районах с вечномёрзлыми грунтами. По этой же причине, длина заземлителей должна быть на порядок больше, чем сезонная глубина промерзания в нормальных широтах.

В идеале, сопротивление грунта и заземляющего устройства в целом необходимо исследовать практически, тогда как формулы помогут нам сделать базовые расчёты. Часто анализ происходит непосредственно на стадии монтажа контуров — погружают электроды и в реальном времени делают замеры проводимости заземления: если сопротивление слишком велико, то увеличивают количество заземлителей или степень их заглубления.

Отметим, что заземление должно работать в любое время года, поэтому его рекомендуют проверять в самых неблагоприятных условиях (засуха, морозы). Если такой возможности нет, к результатам применяются специальные коэффициенты, учитывающие сезонные изменения сопротивления грунтов в конкретной местности.

Некоторую сложность может вызывать коэффициент использования — он отображает явление, при котором рядом расположенные электроды в контуре оказывают влияние друг на друга, так как зоны рассеивания токов в грунте при излишнем приближении начинают пересекаться. Чем ближе расположены отдельные заземлители друг к другу — тем больше общее сопротивление заземляющего устройства. Вокруг каждого электрода в грунте образуется рабочая сфера с радиусом равным его длине, значит, идеальное расстояние между заземлителями будет их длина в земле (L), умноженная на 2.

Что касается схемы расположения заземлителей, то они не обязательно должны образовывать треугольник, хотя это самая распространённая конфигурация контура. Электроды могут располагаться в один ряд с последовательным соединением. Такой вариант удобен, если для обустройства заземления выделена узкая полоска земли.

Монтаж заземления
Принципиально можно выделить два типа заземляющих устройств, которые отличаются друг от друга по технике монтажа и характеристикам материалов. Первый представляет собой штыревую модульную конструкцию (заводского производства) с одним или несколькими электродами, второй — самодельный вариант с несколькими заземлителями из металлопроката. Основные их отличия заключаются лишь в организации заглублённой части — проводниковая, «верхняя», часть у них идентична.

Заводские наборы заземления технологичны и имеют ряд достоинств:

поставляются комплектно, элементы специально разработаны для обустройства защиты и произведены на промышленном оборудовании;
почти не требуют выполнения земляных, не нужны сварочные работы;
позволяют заглубиться на несколько десятков метров и получить очень низкое, стабильное сопротивление всего устройства.
Заземление в частном доме. Расчет, устройство, монтаж

Единственный недостаток подобных систем — это их высокая стоимость.

Другие интересные статьи